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Nagatomo's universal Grassmann manifold scheme is extended to a double form, 
which is used to find the exact solutions of the stationary axisymmetric vacuum 
gravitational field equations. Some new results are given. 

1. INTRODUCTION 

The stationary axisymmetric vacuum gravitational field (SAVGF) equa- 
tions have been reduced to the Ernst equation (Ernst, 1968) and studied 
extensively. In order to obtain exact solutions of the SAVGF equations, 
various methods have been used, such as Backlund transformations (Harrison, 
1978; Neugebauer, 1979) and inverse scattering methods (Belinskii and Zak- 
harov, 1979; Hauser and Ernst, 1981). Several years ago, Zhong (1985) 
established a double complex function method and used it to study the SAVGF 
equations; some further new results were given by Zhong (1988) and Gao 
and Zhong (1992). Nagatomo (1989) pointed out that the SAVGF equations 
can be linearized by the use of universal Grassmann manifold (UGM) tech- 
niques. As a result, some classes of exact solutions of SAVGF equations with 
given initial data can be obtained. However, in the scheme of Nagatomo 
(1989), only ordinary complex numbers are used, and therefore, according 
to the theory given by Zhong (1985, 1988), the double duality symmetries 
must be lost. In this paper, we extend Nagatomo's UGM technique (Nagatomo, 
1989) to a double form. We find that at least half of the exact solutions obtained 
by using our scheme cannot be obtained by using the original technique. 
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In Section 2, we briefly write out some relevant notations and results of  
the double complex function method (Zhong, 1985). In Section 3, Nagatomo's 
UGM technique is extended to a double form and some new results are 
given. Several concrete applications of the double UGM method are given 
in Section 4. 

2. SOME NOTATIONS AND RESULTS OF THE DOUBLE 
C O M P L E X  FUNCTION M E T H O D  

Let J denote the double imaginary unit, i.e., J : i (/2 = _ 1) or J : E 
(E 2 ~--- "4-l ,  E =# -4-1). If the real series ~ a,  is absolutely convergent, then 
a(J) = E,~=o an J2n is called a double real number. If a(J) and b(J) both are 
double real numbers, then Z(J) = a(J) + J" b(J) is called a double complex 
number and denoted by Zc = Z(J = i), ZH = Z(J = e). 

The line element of the SAVGF can be written as 

ds 2 = f-l[e2"~(dp2 + dz 2) + pEdd#2] -f(dt + to dqb) 2 (2.1) 

where f, to, and ~/are real functions of p and z only, and ~/is determined by 
f a n d  to. According to Zhong (1985), Einstein's field equations can be reduced 
to the following double complex Ernst equation: 

Re(%(J)) V2c~(J) = V%(J). V%(J) (2.2) 

where %(J) = F(J) + J" l~(J) is a double complex Ernst potential, while 
F(J) = F(p, z; J)  and ~ ( J )  = ~(p, z; J )  are double real functions of p and 
z. If %(J) is a double solution of equation (2.2), then a pair of dual solutions 
(f, to) and (f, &) of the SAVGF equations can be obtained as 

f = Fc, to = Vrc(12c) 

j~ = T(FH), & = ~H (2.3) 

where the NK transformations (T, V) are defined by 

T: r---) T(F) = 9IF 

V'. F, a ---) VF(a) = I ~2 (Ozl-l'dP - Opl) . dz) (2.4) 

Let M(J) be a 2 • 2 double real function matrix, 

1 ( 1 ~(J) 
M(J) = ~ _El(J) ~ z ( j )  _ j2F2(j) ,  ] (2.5) 

Then equation (2.2) can be written as the double BZ equations (Belinskii 
and Zakharov, 1979; Zhong, 1988): 
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ap[pcgpM(J)'M-l(J)] + az[pOzM(J)'M-t(J)] = 0 (2.6a) 

det M(J) = _ j2 ,  MT(j) = M(J) (2.6b) 

where superscript T denotes the transposition. Conversely, ifM(J) is a solution 
of equation (2.6), then 

%(J) = lI[M(J)]11 + J'[M(J)]IY[M(J)]11 (2.7) 

satisfies equation (2.2). 

3. DOUBLE UGM METHOD FOR SOLVING SAVGF EQUATIONS 

In this section, we extend the UGM method given by Nagatomo (1989) 
to a double form and study its effects. For double results that can be proved 
by using methods similar to those of Nagatomo (1989), we shall directly 
write them out. 

Let ~ [ J ]  be the set of all 2 x 2 matrices with elements in DR (double 
real numbers), let ~[z; J]  and ~[p, z; J ]  denote, respectively, the sets of all 
formal power series in z and (p, z) both with coefficients in c6[J], and let 
Or[z; J]• denote the set of invertible elements in ~[z; J]. 

Theorem 1. The initial value problem 

0p[papg(J)'M-l(J) + Oz[pOzM(J)'M-l(J)] = O, M(J) ~ C6[p, z; J] (3.1a) 

g ( p ,  z; J)lp=o = g(z; J) ,  g(z; J) ~ ~[z ;  J]• (3.1b) 

has a unique double solution. If an initial datum M(z; J) satisfies the supple- 
mentary conditions 

det M(z; J)  = _ j2 ,  Mr(z; J)  = M(z; J)  (3.2) 

then the unique solution of equations (3.1) also satisfies the condition 
(2.6b). �9 

Theorem 2. If M(p, z; J )  is a double solution of equations (3.1), then 
we have 

M(-p ,  z; J )  = M(p, z; J)  (3.3) 

i.e., M(p, z; J)  is an even function of p. 

Proof. If M(p, z; J)  is a solution of equation (3.1a), so is M(-p ,  x; J). 
Furthermore, because both M(p, z; J )  and M(-p ,  z; J)  have the same initial 
datum at p = 0, then by Theorem 1, we have (3.3). �9 
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Equation (3.1a) is the integrability condition of the following double 
linear system (Belinskii and Zakharov, 1979; Zhong, 1988; Nagatomo, 1989): 

Dp~(h; J )  = Q(J)~(X; J) 

Dz~(h; J)  = P(J)~(h; J) (3.4) 

where 

Dp - ap + hpa z, D z -- a z - hpap + 2)t2ax 

Q(J) =- OpM(J).M-'(J),  P(J) =- OzM(J).M-'(J)  (3.5) 

and ~(h;  J)  = ~(p, z, h; J), called a double wave function, is a 2 • 2 
double ordinary complex matrix function of p, z, and the spectral parameter 
h. In this paper we deal with double wave functions that are analytic at 
(p, z; x) = (o, o; o% 

Theorem 3. Let M(p, z; J )  be a solution of equation (2.6). Then there 
exists a unique double wave function 

att(p, z, h; J )  = h + ~ t~j(p, z; J)X -j, dgj(p, z; J )  e C~[p, z; J] 
j= l  

such that 

Dp~(h; J)  = Q(J)~(h;  J), Dz~(h; J)  = P(J )~(h ;  J )  

~t,(p, z, x; ,z)l~o = I 2 (2 X 2 unit matrix) (3.6) 

Furthermore, we have the following result. 

Theorem 4. Equations (3.6) are equivalent to the following initial 
value problem: 

Dp~(X; J)  = Q(J)~(h;  J )  

o o  

~(p, Z, h; J )  = / 2  + ~ ~y(p, z; J)X -j, t~j(p, z; J )  E ~[p, z; J] 
j= l  

[( xlr(p, Z, k; J)lp=0 = M(z; J)" M z + ; J (3.7) 

In terms of the double function set {t~j(p, z; J)}, equations'(3.7) can be 
written as 

paz~j(J ) = -apt~i_,(J ) + a(J)~Ji_~(J) 

%(p, z; J)Ip=o = ~j(z; J) (3.8) 

where the ~j(z; J) are determined by 
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[( )]l 
M(z; J)" M z + ~-~ J = ~] %(z; J )h  -j (3.9) 

j=0 

Upon taking j = 1 in equations (3.8) and noting that t~0(J) = 12, we have 

Q(J) = p0zt~(p, z; J) (3.10) 

The relation between the double wave function ~(p, z, h; J) and the solutions 
of equations (3.1) is given by the following result. 

Theorem 5. The unique double solution M(p, z; J) of the initial value 
problem 

0pM(p, Z; J)  = Q(P, z; J)M(p, Z; J), M(p, Z; J)l,=0 = M(z; J) 
(3.11) 

satisfies equations (3.1) [or equations (2.6) if a suitable initial datum is taken], 
where Q(J) is given by equation (3.10). 

From Theorem 5, the problem of generating solutions of equations (2.6) 
is reduced to that of finding ~j(p, z; J) e ~[p, z; J] which obey equations 
(3.8). Equations (3.8) can be linearized by the use of the following so-called 
double UGM method. Similar to Nagatomo (1989), we introduce an oo • 
double matrix function ~(J) = (~0(J))i~z,./<0, l~/j(J) �9 %[p, z; J] obeying 

A~(J) = r;(J)C(J), ~ij(J) = 8iji2, for i , j  < 0 (3.12) 

where 

{(Si+l jlz)i<- ,.j<o~ 
A ~ (~i+l,jl2)i.jez and C(J) ~ ~ (~:j(J))j<o ] 

Then we have a bijection between W(p, z, h; J)  and ~(p, z; J)  characterized by 

I?;oj(J) = - ~ _ j ( J )  for j < 0 (3.13) 

or more explicitly 

~(J) = (t~_j (J))i~ z,j<0" (~i-j (J))i,j<o (3.14) 

where we set ~j(J) = d~(J)  = 0 for j < 0 and the ~7(J)  denote the 
coefficients of W-l(p, z, h; J) fo r j  -> 0, i.e., 

c ~  

'~- '(o, z, x; J) = ~ ~,?(J)x-J 
j=0 

By using the matrix ~(J), we can write equations (3.8) as 

pOzl~i+lj(J ) + C')p~ij(J ) - ~i,_l(J)pOzf;Oj(J) = 0 (3.15) 
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for i e Z, j < 0. A linearization of this equation is given by the following 
result. 

Theorem 6. Let ~t~ J )  be an oo • oo matrix satisfying equations (3.12) 
and ~~ J )  = -O- j ( z ;  J ) , j  < 0. Define the oo • oo matrices 

(1) 
~(p, Z; J )  = exp - ~  p2AOz ~(~ J )  

= ~ - (~ J)/k! 
k=O 

~<-)(p, z; J )  = (~ij(P, z; J))i.j<0 (3.16) 

Then the inverse ~-~)(J) and the product ~(J).  ~(J)(J) both can be defined as 
oo • ~ matrices, and the double matrix ~(J) = ~(J).  ~(J)(J) satisfies equations 
(3.15) and (3.12). 

By using the above theorems, we can construct some exact solutions of  
the SAVGF equations. Noting that the formulas in this paper all are double, 
from each solution M(p, z; J )  of  equations (3.1) we can obtain a pair of  dual 
SAVGF solutions (f, to) and (f, &) by equations (2.7) and (2.3). Let S and 

denote the sets consisting of the solutions { (f, to) } and { (f, &) }, respectively; 
then we have the following result. 

Theorem 7. S rl S = g (empty set). 

Proof. According to Theorem 2, M(p, z; J )  is an even function of  p, 
and from equations (2.7) and (2 .3) , f  = 1/Mll(J = i ) , f  = pMll(J = e); thus 
f is an even and f is an odd function of  p, and we have {f} fq {f} = O, 
which means that equation (3.17) holds. �9 

Remark. Theorem 7 is proved for the case of  formal series solutions; 
however, in the general case, it does not necessarily hold. 

The set S mentioned above is evidently the set of  all solutions that can 
be obtained by Nagatomo's UGM method (Nagatomo, 1989). In this sense, 
Theorem 6 shows that the solutions in set S are indeed new. Furthermore, 
since there is a bijection between the formal power series solutions M(p, z; 
J )  and the initial data M(z; J) and the latter must satisfy the conditions (3.2), 
for each solution (f, to) ~ S there exists a dual solution (f, t3) ~ S. On the 
other hand, there may be no dual solutions for some solutions in S (see the 
next section). Thus we can conclude that by using the above double UGM 
method, we can obtain solutions which at least double in number those that 
can be obtained by using the original scheme. 
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4. APPLICATIONS 

From the above discussions, once an initial datum M(z; J) which satisfies 
the conditions (3.2) is given, then ~(~ J)  is obtained by 

~(~ J)  = (O~'-j(z; J))iezd<o'(l~i-j(Z, J))i.j<o (4.1) 

where d~j(z; J)  is determined by equation (3.9). Then Theorem 6 is used and 
the corresponding double solution M(p, z; J)  of equation (2.6) is obtained 
by solving the following initial value problem: 

OpM(J) = -paz~O,-l(J)'M(J), M(J)lp=o = M(z; J) (4.2) 

If M(z; J) is a finite-degree polynomial of z, then the calculations involve 
essentially only finite-dimensional matrices. In the following, we give some 
concrete examples: 

Example 1. Taking the initial datum as 

(: z /  
Ml(z; J) = z 2 _ j2  (4.3) 

which satisfies condition (3.2), then from equation (4.1) and Theorem 6 
we find 

0zl~0,-i(p, z; J) (j2 + p2/4 ) 1/2 

and the corresponding double solution of equation (4.2) is 

, (: z / 
M1(p, Z; J)  - (1 + j2 p2/4 ) z 2 _ j2(l  + j2 p2/4)2 (4.5) 

By equation (2.7) we obtain a double complex Ernst potential 

%~(J) = (1 +J2P---~)+Jz (4.6) 

and equations (2.3) give two SAVGF solutions 

(~, col) = (1 - p2/4, 2/(1 - p2/4)) (4.7a) 

(f~, &~) = (p/(1 + p2/4), z) (4.7b) 

By using the results of Nakamura (1983) and Zhong (1985), we can take the 
following transformation of the double complex Ernst potential: 

%(J) ---> ~(J) = %-~(J) (4.8) 
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Then we obtain another Ernst potential 

1 + j2  p2/4 z 
~ l ( J )  = (1 + j2  p2/4)2 _ j 2 z 2  - J (1 + j2 p2/4)2 _ j2z2 (4.9) 

and from equations (2.3) another pair of SAVGF solutions are given as 

( 1 -- p2/4 p2(1 -- p2/g--z2)) 
(f~, o)'~) = (1 - ~-/4-75F Z 2' ~ -- ~/~-) (4.10a) 

( f ~ , c b D = ( p [ ( l  + p 2 / 4 ) 2 - z 2 ]  - z  ) 
1 + p2/4 ' (1  + p2/4)2 - z i (4.10b) 

Of the four solutions (4.7a), (4.7b) and (4.10a), (4.10b), the solution (4.10a) 
was given by Nagatomo (1989), while the others are new. 

Example 2. Let the initial datum be 

M2(z; j )  = (2z2+(1 - J2)z + 1 2z 2 ) 
2z 2 2z 2 - (1 - J2)z - j2 (4.11) 

Similar to Example 1, we obtain a double solution of equation (2.6) as 

1 
M2(p, z; J)  = I - (1 - j2)p2/2 

1 1 p2 ) (1 - j2)p4 _ p2 + 2z 2 + (1 - J2)z + 1 4(J2  _ l)p4 _ + 2z 2 

X / 4 ( J 2 - 1 ) p 4  p2+2Z2 1(1 - J 2 ) p 4 -  p 2 + 2 z 2 - ( l  - J 2 ) z - J 2  

(4.12) 

From equation (2.7), the associated double complex Ernst potential is 

%2(J )=  [1 - ( 1  -J2)p212] + J . [ � 8 8  l ) p 4 _ p 2 + 2 z 2 1  (4.13) 
� 8 8  - -  j 2 ) p 4  __ 132 + 2Z 2 + (1 - Y2)z + 1 

Thus equations (2.3) give a pair of SAVGF solutions: 

( 2(1 - P2) 1[ 2 P2(_2Z-- !)21~. 
Oe2' 0)2) = ip 2 - 1) 2 ~ (2Z + 1) 2, 2 p + l _ p 2  j }  (4.14a) 

( 2z2-P2 ) 
(f2, 6)2) = p(2z 2 - p2 + 1), 2z ~ Z p-i -T- 1 (4.14b) 

Furthermore, under the transformation as in equation (4.8), %2(J) is changed 
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into ~2(J)  = %~-l(j), from which we obtain another pair of  SAVGF solu- 
tions as 

(f~, to~) = (p2 _ 1)2 ~ (2z - 1) 2, 2 [ 1 ~S p~ p2 (4.15a) 

, & ~ ) =  p ( p 2 _ 2 z +  1 ) , p 2 ~ 2 - ~ 1 -  (4.15b) 

The solution (4.15a) was given by Nagatomo (1989), while (4.14a), (4.14b), 
and (4.15b) are new solutions. 

We can also write out some other initial datum M(z; J). For example, 
we take, more generally, 

( 1  g(z; J) ) 
M3(z; J )  = g(z; J) g2(z; j )  _ j2  (4.16) 

2hZ(z; J )  + (1 - J2)h(z; J )  + 1 2h2(z; J )  ] 
M4(Z; J )  = 2h2(z; J) 2hZ(z; J) - (1 - J2)h(z; J) - j2 (4.17) 

/ 

etc., where g(z; J) and h(z; J) are arbitrary double real polynomials of z. 
The matrices (4.16) and (4.17) both satisfy the condition (3.2). Once a concrete 
g(z; J) or h(z; J) is taken, we can obtain four SAVGF solutions. The initial 
data (4.3) and (4.11) are, respectively, special cases of  (4.16) and (4.17) if 
we take g(z; J) = h(z; J) = z. 

Example 3. We take another class of  M(z; J) as 

where u(z) is an arbitrary real polynomial of  z. Noting that Ms(z) satisfies 
the condition (3.2) only when J = e, from Theorem 1 the solutions correspond- 
ing to the initial data in the form (4.18) satisfy (2.6) only when J = ~ also. 
Since [M~(z)122 = 0, the initial datum (4.18) has no double dual (corresponds 
to J = i) matrix. If we choose u(z) = z, then, following procedures similar 
to Examples I and 2, we find 

This yields an SAVGF solution 
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If we take u(z) = z 2, then we obtain 

1 (4.21) 

The corresponding SAVGF solution is 

( ( l )  1 / 
(~; ,&;)=  p z 2 _ 2 P 2  ,z  2 - � 8 9  (4.22) 

etc. However, the solutions (4.19) and (4.21) in fact belong to the class of 
solutions given by van Stockum (1937). 
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